Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

نویسندگان

  • Ashley A. Coble
  • Stephen C. Hart
  • Michael E. Ketterer
  • Gregory S. Newman
  • Andrew L. Kowler
چکیده

Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (Sr/Sr) as a tracer and measured Sr/Sr values in aeolian dust, soils, and vegetation across a well-constrained 3Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Habitat suitability index of Barbus cyri (Heckel, 1843) in Tootkabon River, the South Caspian Sea basin, Iran

Knowledge of habitat requirements of aquatic animals plays an important role in fisheries and protection programs of aquatic ecosystems. Hence, this study was conducted to investigate the suitability indexes of habitat use and habitat suitability index (HSI) of Barbus cyri in its distribution range in Tootkabon River. A number of environmental variables, including elevation, water depth, river ...

متن کامل

Strontium and zinc content of the human skeletal remains from the Iron Age sites in North and South of Iran, as the paleomigration and paleodietary indicators

This research focuses on reconstructing migration and dietary strategies of individuals in the Iron Age. Elemental analyses from archaeological skeletal remains yield an important perspective on temporal shifts in diet in relation to social and environmental circumstances. The elemental ratio data such as dietary and environmental changes have shed light on crucial issues in archaeology. The ce...

متن کامل

Detecting infiltration and impacts of introduced water using strontium isotopes.

Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study w...

متن کامل

Impacts of land use change on nitrogen cycling archived in semiarid unsaturated zone nitrate profiles, southern High Plains, Texas.

Nitrate (NO3) profiles in semiarid unsaturated zones archive land use change (LUC) impacts on nitrogen (N) cycling with implications for agricultural N management and groundwater quality. This study quantified LUC impacts on NO3 inventories and fluxes by measuring NO3 profiles beneath natural and rainfed (nonirrigated) agricultural ecosystems in the southern High Plains (SHP). Inventories of NO...

متن کامل

Shifting soil resource limitations and ecosystem retrogression across a three million year semi-arid substrate age gradient

The current paradigm of plant nutrient limitation during ecosystem development predicts a change from nitrogen (N) limitation when substrates are young to phosphorus (P) limitation when substrates are old. However, there are surprisingly few direct tests of this model. We evaluated this theory experimentally along a three million year semi-arid substrate age gradient using resource additions to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015